Installing Debian from another Linux Distribution such as Gentoo or Arch Linux

Rate this post

There are various scenarios in which one might need to install a Debian-based system (e.g., Debian, Ubuntu, etc.) from another distribution (e.g., Arch Linux, Gentoo, etc.). One common reason is when a user wants to set up a Debian-based system alongside an existing distribution. This could be for the purpose of testing software compatibility, development, or simply to have a dual-boot.

A Debian-based distribution can be installed from any other distribution (e.g. Arch Linux, Gentoo…) using debootstrap. The debootstrap command-line tool allows installing a Debian or Ubuntu base system within a subdirectory of an existing, installed system. Unlike traditional installation methods using a CD or a USB Key, debootstrap only requires access to a Debian repository.

Step 1: Create a new LVM partition, format it, and mount it

# Create the root LVM partition
lvcreate  -L 20G -n debian_root VOL_NAME

# Format the partition
mkfs.ext4 /dev/VOL_NAME/debian_root

# Mount the partition
mkdir /mnt/debian_root
mount /dev/VOL_NAME/debian_root /mnt/debian_rootCode language: plaintext (plaintext)

Step 2: Install the debootstrap command-line tool

On Arch Linux, debootstrap can be installed using:

sudo pacman -Sy debian-archive-keyring debootstrapCode language: plaintext (plaintext)

On Gentoo, it can be installed using:

sudo emerge -a dev-util/debootstrapCode language: plaintext (plaintext)

Step 3: Install the Debian base system

Use the debootstrap command to install Debian into the target directory:

debootstrap  --arch=amd64 stable /mnt/debian_root language: plaintext (plaintext)

You can replace stable with another Debian release like testing or unstable if desired. You can also add the flag --force-check-gpg to force checking Release file signatures.

In the above example, it will install the Debian-based system from the repository into the local directory /mnt/debian_root.

Step 4: Chroot into the Debian system

Since you are installing a Debian-based system inside another distribution (Arch Linux, Gentoo, etc.), you’ll need to ensure that the directory where the Debian system is mounted is ready. You can achieve this by mounting certain directories and chrooting into the Debian system:

sudo mount --bind /dev /mnt/debian_root/dev
sudo mount --bind /proc /mnt/debian_root/proc
sudo mount --bind /sys /mnt/debian_root/sys
sudo mount --bind /boot /mnt/debian_root/boot
sudo cp /etc/resolv.conf /mnt/debian_root/etc/resolv.conf
sudo cp /etc/fstab /mnt/debian_root/etc/fstab
sudo chroot /mnt/debian_root /bin/bash -lCode language: plaintext (plaintext)

The chroot command will open a new shell in the Debian environment.

Step 5: Configure the Debian-based system

Now that you’re inside the Debian-based system, you can configure it as desired. You can install packages, modify configurations, set up users, etc.

Here is an example:

apt-get update

# Install the Linux Kernel
apt-get install linux-image-amd64 firmware-linux-free firmware-misc-nonfree 

# Install cryptsetup if you are using a LUKS encrypted partition
apt-get install cryptsetup cryptsetup-initramfs

# Install misc packages
apt-get install console-setup vim lvm2 sudo

# Reconfigure locales
dpkg-reconfigure locales

# Configure the host name and the time zone
echo yourhostname > /etc/hostname
ln -sf /usr/share/zoneinfo/America/New_York /etc/localtime
Code language: plaintext (plaintext)

Do not forget to:

  • Modify /mnt/debian_root/etc/fstab (The mount point “/” has to point to the Debian system)
  • Modify /mnt/debian_root/etc/crypttab (If you are using a LUKS encrypted partition)
  • Configure the bootloader (Grub, Syslinux, etc.).

Congratulations! You have successfully installed a Debian-based system using debootstrap from another distribution such as Arch Linux, Gentoo, etc.

Arch Linux: Preserving the kernel modules of the currently running kernel during and after an upgrade


One potential issue when upgrading the Arch Linux kernel is that the modules of the currently running kernel may be deleted. This can lead to a number of problems, including unexpected behavior, system crashes, or the inability to mount certain file systems (e.g. the kernel fails to mount a vfat file system due to the unavailability of the vfat kernel module).

The Arch Linux package linux-keep-modules (also available on AUR: linux-keep-modules @AUR), written by James Cherti, provides a solution to ensure that the modules of the currently running Linux kernel remain available until the operating system is restarted. Additionally, after a system restart, the script automatically removes any unnecessary kernel modules that might have been left behind by previous upgrades (e.g. the kernel modules that are not owned by any Arch Linux package and are not required by the currently running kernel).

The linux-keep-modules package keeps your system running smoothly and maintains stability even during major Linux kernel upgrades.

Make and install the linux-keep-modules package

Clone the repository and change the current directory to ‘archlinux-linux-keep-modules/’:

$ git clone
$ cd archlinux-linux-keep-modules/Code language: plaintext (plaintext)

Use makepkg to make linux-keep-modules package:

$ makepkg -fCode language: plaintext (plaintext)

Install the linux-keep-modules package:

$ sudo pacman -U linux-keep-modules-*-any.pkg.tar.*Code language: plaintext (plaintext)

Finally, enable the cleanup-linux-modules service:

$ sudo systemctl enable cleanup-linux-modulesCode language: plaintext (plaintext)

(The cleanup-linux-modules service will delete the Linux kernel modules that are not owned by any a package at boot time)

The linux-keep-modules Arch Linux package offers a solution to preserve kernel modules during and after upgrades, ensuring that the necessary modules for the currently running kernel remain present in the system even after the kernel is upgraded. This solution keeps your system running smoothly and maintains stability even during major upgrades.

Links related to the pacman package linux-keep-modules

Helper script to upgrade Arch Linux easily and efficiently

Rate this post

In this article, we will be sharing a Python script, written by James Cherti, that can be used to upgrade Arch Linux. It is designed to make the process of upgrading the Arch Linux system as easy and efficient as possible.

The helper script to upgrade Arch Linux can:

  • Delete the ‘/var/lib/pacman/db.lck’ when pacman is not running,
  • upgrade archlinux-keyring,
  • upgrade specific packages,
  • download packages,
  • upgrade all packages,
  • remove from the cache the pacman packages that are no longer installed.

The script provides a variety of options and is perfect for those who want to automate the process of upgrading their Arch Linux system (e.g. execute it from cron) and ensure that their system is always up to date.

Requirements: psutil
Python script name:

#!/usr/bin/env python
# Author: James Cherti
# License: MIT
# URL:
"""Helper script to upgrade Arch Linux."""

import argparse
import logging
import os
import re
import subprocess
import sys
import time

import psutil

class ArchUpgrade:
    """Upgrade Arch Linux."""

    def __init__(self, no_refresh: bool):
        self._download_package_db = no_refresh
        self._keyring_and_pacman_upgraded = False

    def _delete_pacman_db_lck():
        """Delete '/var/lib/pacman/db.lck' when pacman is not running."""
        pacman_running = False
        for pid in psutil.pids():
                process = psutil.Process(pid)
                if == "pacman":
                    pacman_running = True
            except psutil.Error:

        if pacman_running:
            print("Error: pacman is already running.", file=sys.stderr)

        lockfile = "/var/lib/pacman/db.lck"
        if os.path.isfile(lockfile):

    def upgrade_specific_packages(self, package_list: list) -> list:
        """Upgrade the packages that are in 'package_list'."""
        outdated_packages = self._outdated_packages(package_list)
        if outdated_packages:
            cmd = ["pacman", "--noconfirm", "-S"] + outdated_packages

        return outdated_packages

    def _outdated_packages(self, package_list: list) -> list:
        """Return the 'package_list' packages that are outdated."""
        outdated_packages = []
            output = subprocess.check_output(["pacman", "-Qu"])
        except subprocess.CalledProcessError:
            output = b""

        for line in output.splitlines():
            line = line.strip()
            pkg_match = re.match(r"^([^\s]*)\s", line.decode())
            if not pkg_match:

            pkg_name =
            if pkg_name in package_list:
                outdated_packages += [pkg_name]

        return outdated_packages

    def upgrade_all_packages():
        """Upgrade all packages."""["pacman", "--noconfirm", "-Su"])

    def download_all_packages(self):
        """Download all packages."""
        self.download_package_db()["pacman", "--noconfirm", "-Suw"])

    def download_package_db(self):
        """Download the package database."""
        if self._download_package_db:

        print("[INFO] Download the package database...")["pacman", "--noconfirm", "-Sy"])
        self._download_package_db = True

    def upgrade_keyring_and_pacman(self):

        if not self._keyring_and_pacman_upgraded:
            self._keyring_and_pacman_upgraded = True

    def clean_package_cache(self):
        """Remove packages that are no longer installed from the cache."""["pacman", "--noconfirm", "-Scc"])

    def run(cmd, *args, print_command=True, **kwargs):
        """Execute the command 'cmd'."""
        if print_command:
            print("[RUN] " + subprocess.list2cmdline(cmd))


    def wait_download_package_db(self):
        """Wait until the package database is downloaded."""
        successful = False
        minutes = 60
        hours = 60 * 60
        seconds_between_tests = 15 * minutes
        for _ in range(int((10 * hours) / seconds_between_tests)):
            except subprocess.CalledProcessError:
                minutes = int(seconds_between_tests / 60)
                    f"[INFO] Waiting {minutes} minutes before downloading "
                    "the package database...",
                successful = True

        if not successful:
            print("Error: failed to download the package database...",

def parse_args():
    """Parse the command-line arguments."""
    usage = "%(prog)s [--option] [args]"
    parser = argparse.ArgumentParser(description=__doc__.splitlines()[0],
                        help="Upgrade specific packages.")

        help="Upgrade all packages.",

        help="Download the packages that need to be upgraded.",

        help=("Remove packages that are no longer installed from "
              "the cache."),

        help=("Do not download the package database (pacman -Sy)."),

        help=("Wait for a successful download of the package database "
              "(pacman -Sy)."),

    return parser.parse_args()

def command_line_interface():
    """The command-line interface."""
    logging.basicConfig(level=logging.INFO, stream=sys.stdout,
                        format="%(asctime)s %(name)s: %(message)s")

    if os.getuid() != 0:
        print("Error: you cannot perform this operation unless you are root.",

    nothing_to_do = True
    args = parse_args()
    upgrade = ArchUpgrade(no_refresh=args.no_refresh)

    if args.wait_refresh:
        nothing_to_do = False

    if args.packages:
        print("[INFO] Upgrade the packages:", ", ".join(args.packages))
        if not upgrade.upgrade_specific_packages(args.packages):
            print("[INFO] The following packages are already up-to-date:",
                  ", ".join(args.packages))
        nothing_to_do = False

    if args.download_packages:
        print("[INFO] Download all packages...")
        nothing_to_do = False

    if args.upgrade_packages:
        print("[INFO] Upgrade all packages...")

        nothing_to_do = False

    if args.clean:
        print("[INFO] Remove packages that are no longer installed "
              "from the cache...")
        nothing_to_do = False

    if nothing_to_do:
        print("Nothing to do.")


def main():
    except subprocess.CalledProcessError as err:
        print(f"[ERROR] Error {err.returncode} returned by the command: "

if __name__ == '__main__':
    main()Code language: Python (python)